Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Curr Res Toxicol ; 6: 100153, 2024.
Article En | MEDLINE | ID: mdl-38379847

On murine N2a cells, 7-ketocholesterol induced an oxiapotophagic mode of cell death characterized by oxidative stress (reactive oxygen species overproduction on whole cells and at the mitochondrial level; lipid peroxidation), apoptosis induction (caspase-9, -3 and -7 cleavage, PARP degradation) and autophagy (increased ratio LC3-II / LC3-I). Oxidative stress was strongly attenuated by diphenyleneiodonium chloride which inhibits NAD(P)H oxidase. Mitochondrial and peroxisomal morphological and functional changes were also observed. Down regulation of PDK1 / Akt signaling pathways as well as of GSK3 / Mcl-1 and Nrf2 pathways were simultaneously observed in 7-ketocholesterol-induced oxiapoptophagy. These events were prevented by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by LY-294002, a PI3-K inhibitor, demonstrated an essential role of PI3-K in cell rescue. The rupture of oxidative stress in 7-ketocholesterol-induced oxiapoptophagy was also associated with important modifications of glutathione peroxidase, superoxide dismutase and catalase activities as well as of glutathione peroxidase-1, superoxide dismutase-1 and catalase level and expression. These events were also counteracted by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol. The inhibition of the cytoprotection by mercaptosuccinic acid, a glutathione peroxidase inhibitor, showed an essential role of this enzyme in cell rescue. Altogether, our data support that the reactivation of PI3-K and glutathione peroxidase activities by α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, oleic acid and α-tocopherol are essential to prevent 7KC-induced oxiapoptophagy.

2.
Cell Death Dis ; 14(5): 323, 2023 05 12.
Article En | MEDLINE | ID: mdl-37173331

Nitroglycerin (NTG) is a prodrug that has long been used in clinical practice for the treatment of angina pectoris. The biotransformation of NTG and subsequent release of nitric oxide (NO) is responsible for its vasodilatating property. Because of the remarkable ambivalence of NO in cancer disease, either protumorigenic or antitumorigenic (partly dependent on low or high concentrations), harnessing the therapeutic potential of NTG has gain interest to improve standard therapies in oncology. Cancer therapeutic resistance remains the greatest challenge to overcome in order to improve the management of cancer patients. As a NO releasing agent, NTG has been the subject of several preclinical and clinical studies used in combinatorial anticancer therapy. Here, we provide an overview of the use of NTG in cancer therapy in order to foresee new potential therapeutic avenues.


Neoplasms , Nitroglycerin , Humans , Nitroglycerin/pharmacology , Nitroglycerin/therapeutic use , Angina Pectoris , Nitric Oxide , Neoplasms/drug therapy
3.
Biochimie ; 212: 95-105, 2023 Sep.
Article En | MEDLINE | ID: mdl-37098369

It is known that the activities of Na+/K+- and Ca2+-ATPases in the plasma membrane with an excess of cholesterol are compromised. Our main goal was to find out whether quercetin, resveratrol, or caffeic acid, in the nano- and low micromolar concentration ranges, can improve the ATPase activity in human erythrocyte membranes with excess cholesterol. These molecules belong to different chemical classes of polyphenols and are widely present in plant foods. Also, due to some variations in the protocol for determining the ATPase activity, we first analyzed several key parameters of the protocol to improve the accuracy of the results. The activities of Na+/K+- and Ca2+-ATPases were reduced in membranes with moderate and high cholesterol levels compared to membranes from normocholesterolemic subjects (p < 0.01). All three polyphenols affected the ATPase activity in a similar biphasic manner. Namely, the ATPase activity gradually increased with increasing polyphenol concentration up to 80-200 nM, and then gradually decreased with further increase in polyphenol concentration. Moreover, the stimulating effect of the polyphenols was highest in membranes with high cholesterol content, making ATPase activity values close/equal to those in normal cholesterol membranes. In other words, quercetin, resveratrol, and caffeic acid at nanomolar concentrations were able to improve/restore the functioning of Na+/K+- and Ca2+-ATPases in erythrocyte membranes with high cholesterol levels. This suggests a common membrane-mediated mechanism of action for these polyphenols, related to the content of membrane cholesterol.


Erythrocyte Membrane , Hypercholesterolemia , Humans , Erythrocyte Membrane/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Polyphenols/pharmacology , Resveratrol/pharmacology , Resveratrol/analysis , Quercetin/pharmacology , Cholesterol/analysis , Ions/metabolism
4.
Steroids ; 187: 109093, 2022 11.
Article En | MEDLINE | ID: mdl-36029811

7-ketocholesterol and 7ß-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7ß-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7ß-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7ß-hydroxycholesterol.


Diabetes Mellitus, Type 2 , Diet, Mediterranean , Aging , Civilization , Fatty Acids , Humans , Hydroxycholesterols/pharmacology , Ketocholesterols/pharmacology , Nutrients , Oils , Olive Oil , Polyphenols , Tocopherols
5.
Steroids ; 183: 109032, 2022 07.
Article En | MEDLINE | ID: mdl-35381271

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Silybum marianum , alpha-Tocopherol , Animals , Antioxidants/pharmacology , Flavonoids , Humans , Hydroxycholesterols , Mice , Silybum marianum/metabolism , Myoblasts/metabolism , Plant Oils , RNA, Messenger , Reactive Oxygen Species/metabolism , alpha-Tocopherol/pharmacology
6.
Antioxidants (Basel) ; 10(11)2021 Nov 05.
Article En | MEDLINE | ID: mdl-34829643

Aging is characterized by a progressive increase in oxidative stress, which favors lipid peroxidation and the formation of cholesterol oxide derivatives, including 7ß-hydroxycholesterol (7ß-OHC). This oxysterol, which is known to trigger oxidative stress, inflammation, and cell death, could contribute to the aging process and age-related diseases, such as sarcopenia. Identifying molecules or mixtures of molecules preventing the toxicity of 7ß-OHC is therefore an important issue. This study consists of determining the chemical composition of Tunisian Pistacia lentiscus L. seed oil (PLSO) used in the Tunisian diet and evaluating its ability to counteract the cytotoxic effects induced by 7ß-OHC in murine C2C12 myoblasts. The effects of 7ß-OHC (50 µM; 24 h), associated or not with PLSO, were studied on cell viability, oxidative stress, and on mitochondrial and peroxisomal damages induction. α-Tocopherol (400 µM) was used as the positive control for cytoprotection. Our data show that PLSO is rich in bioactive compounds; it contains polyunsaturated fatty acids, and several nutrients with antioxidant properties: phytosterols, α-tocopherol, carotenoids, flavonoids, and phenolic compounds. When associated with PLSO (100 µg/mL), the 7ß-OHC-induced cytotoxic effects were strongly attenuated. The cytoprotection was in the range of those observed with α-tocopherol. This cytoprotective effect was characterized by prevention of cell death and organelle dysfunction (restoration of cell adhesion, cell viability, and plasma membrane integrity; prevention of mitochondrial and peroxisomal damage) and attenuation of oxidative stress (reduction in reactive oxygen species overproduction in whole cells and at the mitochondrial level; decrease in lipid and protein oxidation products formation; and normalization of antioxidant enzyme activities: glutathione peroxidase (GPx) and superoxide dismutase (SOD)). These results provide evidence that PLSO has similar antioxidant properties than α-tocopherol used at high concentration and contains a mixture of molecules capable to attenuate 7ß-OHC-induced cytotoxic effects in C2C12 myoblasts. These data reinforce the interest in edible oils associated with the Mediterranean diet, such as PLSO, in the prevention of age-related diseases, such as sarcopenia.

7.
Molecules ; 26(12)2021 Jun 08.
Article En | MEDLINE | ID: mdl-34201125

The Mediterranean diet is a central element of a healthy lifestyle, where polyphenols play a key role due to their anti-oxidant properties, and for some of them, as nutripharmacological compounds capable of preventing a number of diseases, including cancer. Due to the high prevalence of intestinal cancer (ranking second in causing morbidity and mortality), this review is focused on the beneficial effects of selected dietary phytophenols, largely present in Mediterranean cooking: apigenin, curcumin, epigallocatechin gallate, quercetin-rutine, and resveratrol. The role of the Mediterranean diet in the prevention of colorectal cancer and future perspectives are discussed in terms of food polyphenol content, the effectiveness, the plasma level, and the importance of other factors, such as the polyphenol metabolites and the influence of the microbiome. Perspectives are discussed in terms of microbiome-dependency of the brain-second brain axis. The emergence of polyphenol formulations may strengthen the efficiency of the Mediterranean diet in the prevention of cancer.


Colorectal Neoplasms/prevention & control , Polyphenols/pharmacology , Animals , Antioxidants/pharmacology , Diet, Mediterranean , Humans , Intestines/drug effects , Microbiota/drug effects
8.
Br J Pharmacol ; 178(16): 3115-3123, 2021 08.
Article En | MEDLINE | ID: mdl-32579703

Oxysterols are oxidized forms of cholesterol generated from cholesterol by auto-oxidation, enzymatic processes, or both. Some of them (7-ketocholesterol, 7ß-hydroxycholesterol and 24(S)-hydroxycholesterol), when used at cytotoxic concentrations on different cell types from different species (mesenchymal bone marrow cells, monocytic cells and nerve cells), induce a type of cell death associated with OXIdative stress and several characteristics of APOPTOsis and autoPHAGY, defined as oxiapoptophagy. Oxidative stress is associated with overproduction of ROS, increased antioxidant enzyme activities, lipid peroxidation and protein carbonylation. Apoptosis is associated with activation of the mitochondrial pathway, opening of the mitochondrial permeability pore, loss of mitochondrial membrane potential, caspase-3 activation, PARP degradation, nuclear condensation and/or fragmentation. Autophagy is characterized by autophagic vacuoles revealed by monodansylcadaverine staining and transmission electron microscopy, plus increased ratio of LC-3II/LC-3I. In addition, morphological, topographical and functional changes of the peroxisome are observed. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Oxysterols , Apoptosis , Autophagy , Cell Death , Mitochondria
9.
Cells ; 9(11)2020 10 23.
Article En | MEDLINE | ID: mdl-33114025

The Mediterranean diet is associated with health benefits due to bioactive compounds such as polyphenols. The biological activities of three polyphenols (quercetin (QCT), resveratrol (RSV), apigenin (API)) were evaluated in mouse neuronal N2a cells in the presence of 7-ketocholesterol (7KC), a major cholesterol oxidation product increased in patients with age-related diseases, including neurodegenerative disorders. In N2a cells, 7KC (50 µM; 48 h) induces cytotoxic effects characterized by an induction of cell death. When associated with RSV, QCT and API (3.125; 6.25 µM), 7KC-induced toxicity was reduced. The ability of QCT, RSV and API to prevent 7KC-induced oxidative stress was characterized by a decrease in reactive oxygen species (ROS) production in whole cells and at the mitochondrial level; by an attenuation of the increase in the level and activity of catalase; by attenuating the decrease in the expression, level and activity of glutathione peroxidase 1 (GPx1); by normalizing the expression, level and activity of superoxide dismutases 1 and 2 (SOD1, SOD2); and by reducing the decrease in the expression of nuclear erythroid 2-like factor 2 (Nrf2) which regulates antioxidant genes. QCT, RSV and API also prevented mitochondrial dysfunction in 7KC-treated cells by counteracting the loss of mitochondrial membrane potential (ΨΔm) and attenuating the decreased gene expression and/or protein level of AMP-activated protein kinase α (AMPKα), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) implicated in mitochondrial biogenesis. At the peroxisomal level, QCT, RSV and API prevented the impact of 7KC by counteracting the decrease in ATP binding cassette subfamily D member (ABCD)3 (a peroxisomal mass marker) at the protein and mRNA levels, as well as the decreased expresssion of genes associated with peroxisomal biogenesis (Pex13, Pex14) and peroxisomal ß-oxidation (Abcd1, Acox1, Mfp2, Thiolase A). The 7KC-induced decrease in ABCD1 and multifunctional enzyme type 2 (MFP2), two proteins involved in peroxisomal ß-oxidation, was also attenuated by RSV, QCT and API. 7KC-induced cell death, which has characteristics of apoptosis (cells with fragmented and/or condensed nuclei; cleaved caspase-3; Poly(ADP-ribose) polymerase (PARP) fragmentation) and autophagy (cells with monodansyl cadaverine positive vacuoles; activation of microtubule associated protein 1 light chain 3-I (LC3-I) to LC3-II, was also strongly attenuated by RSV, QCT and API. Thus, in N2a cells, 7KC induces a mode of cell death by oxiapoptophagy, including criteria of OXIdative stress, APOPTOsis and autoPHAGY, associated with mitochondrial and peroxisomal dysfunction, which is counteracted by RSV, QCT, and API reinforcing the interest for these polyphenols in prevention of diseases associated with increased 7KC levels.


Apoptosis/drug effects , Autophagy/drug effects , Ketocholesterols/adverse effects , Neurons/drug effects , Neurons/metabolism , Oxidative Stress/drug effects , Polyphenols/pharmacology , Animals , Apigenin/pharmacology , Cell Line , Dose-Response Relationship, Drug , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Peroxisomes , Quercetin/pharmacology , Reactive Oxygen Species/metabolism , Resveratrol/pharmacology
10.
Molecules ; 25(10)2020 May 13.
Article En | MEDLINE | ID: mdl-32414101

The brain, which is a cholesterol-rich organ, can be subject to oxidative stress in a variety of pathophysiological conditions, age-related diseases and some rare pathologies. This can lead to the formation of 7-ketocholesterol (7KC), a toxic derivative of cholesterol mainly produced by auto-oxidation. So, preventing the neuronal toxicity of 7KC is an important issue to avoid brain damage. As there are numerous data in favor of the prevention of neurodegeneration by the Mediterranean diet, this study aimed to evaluate the potential of a series of polyphenols (resveratrol, RSV; quercetin, QCT; and apigenin, API) as well as ω3 and ω9 unsaturated fatty acids (α-linolenic acid, ALA; eicosapentaenoic acid, EPA; docosahexaenoic acid, DHA, and oleic acid, OA) widely present in this diet, to prevent 7KC (50 µM)-induced dysfunction of N2a neuronal cells. When polyphenols and fatty acids were used at non-toxic concentrations (polyphenols: ≤6.25 µM; fatty acids: ≤25 µM) as defined by the fluorescein diacetate assay, they greatly reduce 7KC-induced toxicity. The cytoprotective effects observed with polyphenols and fatty acids were comparable to those of α-tocopherol (400 µM) used as a reference. These polyphenols and fatty acids attenuate the overproduction of reactive oxygen species and the 7KC-induced drop in mitochondrial transmembrane potential (ΔΨm) measured by flow cytometry after dihydroethidium and DiOC6(3) staining, respectively. Moreover, the studied polyphenols and fatty acids reduced plasma membrane permeability considered as a criterion for cell death measured by flow cytometry after propidium iodide staining. Our data show that polyphenols (RSV, QCT and API) as well as ω3 and ω9 unsaturated fatty acids (ALA, EPA, DHA and OA) are potent cytoprotective agents against 7KC-induced neurotoxicity in N2a cells. Their cytoprotective effects could partly explain the benefits of the Mediterranean diet on human health, particularly in the prevention of neurodegenerative diseases.


Diet, Mediterranean , Fatty Acids, Omega-3/pharmacology , Ketocholesterols/adverse effects , Mitochondria/metabolism , Neurons/metabolism , Polyphenols/pharmacology , Reactive Oxygen Species/metabolism , Animals , Cell Death/drug effects , Cell Line, Tumor , Ketocholesterols/pharmacology , Mice , Mitochondria/pathology , Neurons/pathology
11.
Adv Exp Med Biol ; 1299: 31-41, 2020.
Article En | MEDLINE | ID: mdl-33417205

Peroxisomopathies are qualitative or quantitative deficiencies in peroxisomes which lead to increases in the level of very-long-chain fatty acids (VLCFA) and can be associated with more or less pronounced dysfunction of central nervous system cells: glial and microglial cells. Currently, in frequent neurodegenerative diseases, Alzheimer's disease (AD) and multiple sclerosis (MS), peroxisomal dysfunction is also suspected due to an increase in VLCFA, which can be associated with a decrease of plasmalogens, in these patients. Moreover, in patients suffering from peroxisomopathies, such as X-linked adrenoleukodystrophy (X-ALD), AD, or MS, the increase in oxidative stress observed leads to the formation of cytotoxic oxysterols: 7-ketocholesterol (7KC) and 7ß-hydroxycholesterol (7ß-OHC). These observations led to the demonstration that 7KC and 7ß-OHC alter the biogenesis and activity of peroxisomes in glial and microglial cells. In X-ALD, AD, and MS, it is suggested that 7KC and 7ß-OHC affecting the peroxisome, and which also induce mitochondrial dysfunctions, oxidative stress, and inflammation, could promote neurodegeneration. Consequently, the study of oxisome in peroxisomopathies, AD and MS, could help to better understand the pathophysiology of these diseases to identify therapeutic targets for effective treatments.


Hydroxycholesterols/metabolism , Ketocholesterols/metabolism , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neuroglia/metabolism , Neurons/metabolism , Peroxisomal Disorders/metabolism , Humans , Neurodegenerative Diseases/pathology , Peroxisomal Disorders/pathology
12.
Biochem Pharmacol ; 173: 113648, 2020 03.
Article En | MEDLINE | ID: mdl-31586589

Oxysterols are molecules derived by the oxidation of cholesterol and can be formed either by auto-oxidation, enzymatically or by both processes. Among the oxysterols formed by auto-oxidation, 7-ketocholesterol and 7ß-hydroxycholesterol are the main forms generated. These oxysterols, formed endogenously and brought in large quantities by certain foods, have major cytotoxic properties. They are powerful inducers of oxidative stress, inducing dysfunction of organelles (mitochondria, lysosomes and peroxisomes) that can cause cell death. These molecules are often identified in increased amounts in common pathological states such as cardiovascular diseases, certain eye conditions, neurodegenerative disorders and inflammatory bowel diseases. To oppose the cytotoxic effects of these molecules, it is important to know their biological activities and the signaling pathways they affect. Numerous cell models of the vascular wall, eye, brain, and digestive tract have been used. Currently, to counter the cytotoxic effects of 7-ketocholesterol and 7ß-hydroxycholesterol, natural molecules and oils, often associated with the Mediterranean diet, as well as synthetic molecules, have proved effective in vitro. Bioremediation approaches and the use of functionalized nanoparticles are also promising. At the moment, invertebrate and vertebrate models are mainly used to evaluate the metabolism and the toxicity of 7-ketocholesterol and 7ß-hydroxycholesterol. The most frequently used models are mice, rats and rabbits. In order to cope with the difficulty of transferring the results obtained in animals to humans, the development of in vitro alternative methods such as organ/body-on-a-chip based on microfluidic technology are hopeful integrative approaches.


Disease Models, Animal , Hydroxycholesterols/toxicity , Ketocholesterols/toxicity , Organelles/drug effects , Animals , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/metabolism , Cataract/chemically induced , Cataract/metabolism , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Cells, Cultured , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/metabolism , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/metabolism , Ketocholesterols/chemistry , Ketocholesterols/metabolism , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/metabolism , Organelles/metabolism
13.
Curr Pharm Des ; 25(15): 1791-1805, 2019.
Article En | MEDLINE | ID: mdl-31298157

BACKGROUND: The effects of vegetable oils on human health depend on their components. Therefore, their profiles of lipid nutrients and polyphenols were determined. OBJECTIVE: To establish and compare the fatty acid, tocopherol, phytosterol and polyphenol profiles of Mediterranean oils: cosmetic and dietary argan oils (AO; Morocco: Agadir, Berkane); olive oils (OO; Morocco, Spain, Tunisia); milk thistle seed oils (MTSO; Tunisia: Bizerte, Sousse, Zaghouane); nigella seed oil (NSO). METHODS: The biochemical profiles were determined by gas chromatography-flame ionization, high performance liquid chromatography and gas chromatography, coupled with mass spectrometry as required. The antioxidant and cytoprotective activities were evaluated with the KRL (Kit Radicaux Libres) and the fluorescein diacetate tests on nerve cells treated with 7-ketocholesterol (7KC). RESULTS: The fatty acid profile revealed high linoleic acid (C18:2 n-6) content in AO, OO, MTSO and NSO. The highest levels of oleic acid (C18:1 n-9) were found in AO and OO. The tocopherol profile showed that Agadir AO contained the highest amount of α-tocopherol, also present at high level in MTSO and Tunisian OO; Berkane AO was rich in γ-tocopherol. The phytosterol profile indicated that ß-sitosterol was predominant in the oils, except AO; spinasterol was only present in AO. Polyphenol profiles underlined that OO was the richest in polyphenols; hydroxytyrosol was only found in OO; few polyphenols were detected in AO. The oils studied have antioxidant activities, and all of them, except NSO, prevented 7KC-induced cell death. The antioxidant characteristics of AO were positively correlated with procatechic acid and compestanol levels. CONCLUSION: Based on their biochemical profiles, antioxidant and cytoprotective characteristics, AO, OO, and MTSO are potentially beneficial to human health.


Fatty Acids/analysis , Phytosterols/analysis , Plant Oils/analysis , Polyphenols/analysis , Tocopherols/analysis , Animals , Antioxidants/analysis , Cell Line , Humans , Mice , Silybum marianum/chemistry , Nigella/chemistry , Olive Oil/chemistry , Seeds/chemistry
14.
Crit Rev Food Sci Nutr ; 59(19): 3179-3198, 2019.
Article En | MEDLINE | ID: mdl-29993272

Cholesterol oxidation products, also named oxysterols, can be formed either by cholesterol auto-oxidation, enzymatically or both. Among these oxysterols, 7-ketocholesterol (7KC) is mainly formed during radical attacks that take place on the carbon 7 of cholesterol. As increased levels of 7KC have been found in the tissues, plasma and/or cerebrospinal fluid of patients with major diseases, especially age-related diseases (cardiovascular diseases, eye diseases, neurodegenerative diseases), some cancers, and chronic inflammatory diseases, it is suspected that 7KC, could contribute to their development. Since 7KC, provided by the diet or endogenously formed, is not or little efficiently metabolized, except in hepatic cells, its cellular accumulation can trigger numerous side effects including oxidative stress, inflammation and cell death. To counteract 7KC-induced side effects, it is necessary to characterize the metabolic pathways activated by this oxysterol to identify potential targets for cytoprotection and geroprotection. Currently, several natural compounds (tocopherols, fatty acids, polyphenols, etc) or mixtures of compounds (oils) used in traditional medicine are able to inhibit the deleterious effects of 7KC. The different molecules identified could be valued in different ways (functional foods, recombinant molecules, theranostic) to prevent or treat diseases associated with 7KC.


Ketocholesterols/adverse effects , Noncommunicable Diseases/prevention & control , Antioxidants/pharmacology , Fatty Acids/pharmacology , Humans , Inflammation/prevention & control , Oxidation-Reduction , Oxidative Stress , Polyphenols/pharmacology , Tocopherols/pharmacology
15.
Diseases ; 6(3)2018 Jul 22.
Article En | MEDLINE | ID: mdl-30037152

In the prevention of neurodegeneration associated with aging and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease), neuronal differentiation is of interest. In this context, neurotrophic factors are a family of peptides capable of promoting the growth, survival, and/or differentiation of both developing and immature neurons. In contrast to these peptidyl compounds, polyphenols are not degraded in the intestinal tract and are able to cross the blood⁻brain barrier. Consequently, they could potentially be used as therapeutic agents in neurodegenerative pathologies associated with neuronal loss, thus requiring the stimulation of neurogenesis. We therefore studied the ability to induce neuronal differentiation of two major polyphenols present in the Mediterranean diet: resveratrol (RSV), a major compound found in grapes and red wine, and apigenin (API), present in parsley, rosemary, olive oil, and honey. The effects of these compounds (RSV and API: 6.25⁻50 µM) were studied on murine neuro-2a (N2a) cells after 48 h of treatment without or with 10% fetal bovine serum (FBS). Retinoic acid (RA: 6.25⁻50 µM) was used as positive control. Neuronal differentiation was morphologically evaluated through the presence of dendrites and axons. Cell growth was determined by cell counting and cell viability by staining with fluorescein diacetate (FDA). Neuronal differentiation was more efficient in the absence of serum than with 10% FBS or 10% delipidized FBS. At concentrations inducing neuronal differentiation, no or slight cytotoxicity was observed with RSV and API, whereas RA was cytotoxic. Without FBS, RSV and API, as well as RA, trigger the neuronal differentiation of N2a cells via signaling pathways simultaneously involving protein kinase A (PKA)/phospholipase C (PLC)/protein kinase C (PKC) and MEK/ERK. With 10% FBS, RSV and RA induce neuronal differentiation via PLC/PKC and PKA/PLC/PKC, respectively. With 10% FBS, PKA and PLC/PKC as well as MEK/ERK signaling pathways were not activated in API-induced neuronal differentiation. In addition, the differentiating effects of RSV and API were not inhibited by cyclo[DLeu5] OP, an antagonist of octadecaneuropeptide (ODN) which is a neurotrophic factor. Moreover, RSV and API do not stimulate the expression of the diazepam-binding inhibitor (DBI), the precursor of ODN. Thus, RSV and API are able to induce neuronal differentiation, ODN and its receptor are not involved in this process, and the activation of the (PLC/PKC) signaling pathway is required, except with apigenin in the presence of 10% FBS. These data show that RSV and API are able to induce neuronal differentiation and therefore mimic neurotrophin activity. Thus, RSV and API could be of interest in regenerative medicine to favor neurogenesis.

...